X-Ray Characterization of \textit{Tau}-Induced Microtubule Bundles

Cyrus Safinya Lab \diamond Mentor: Peter Chung
Garrett Chan, Amy Chen, Simone Dupuy, Robert Palfini
Summer Institute in Mathematics and Science
August 30, 2013
Alzheimer’s is thought to be caused by protein defects in the brain.

Research has usually targeted beta-amyloid plaque.

Studies have shown the resulting treatment to be dangerous in many participants.

Alternative path of study lies in Tau proteins.

beta-amyloid plaque
What are Microtubules and Tau Proteins?

Axon

Healthy Neuron

Microtubules

Stabilizing Tau Molecules

Diseased Neuron

Disintegrating Microtubules

Axon

Disintegrating Microtubules

Microtubule Subunits Fall Apart

Tangled Clumps of Tau Proteins

Thursday, August 29, 2013
Research indicates Tau protein possibly related to brain diseases (including Alzheimer’s, Parkinson’s, etc).

Use X-ray scattering to discover relationships between Tau protein and neuronal microtubules.
Primary Tau Protein Structure

- Projection Domain
- Proline-rich Region
- Microtubule Binding Repeats (MTBR)
- C-terminal
Primary \textit{Tau} Protein Structure

- Projection Domain
- Proline-rich Region
- Microtubule Binding Repeats (MTBR)
- C-terminal
Making The Samples

One sample made with full \textit{tau} protein, one made with only MTBR segment to discover effects of other three segments

Mixture of \textit{tau} protein, tubulin, GTP, and a buffer

Each sample split into two to be analyzed via X-ray scattering and DIC microscopy
DIC Microscope Examination

Differential Interference Contrast

Observed microtubule formation and bundling

Thursday, August 29, 2013
X-Ray Scattering Examination

Sample placed in quartz capillary and put in centrifuge to create higher concentration point.

Exposed to X-rays, scattered light collected and analyzed.
Observable Differences in Bundling

Full \textit{Tau} vs. MTBR only

Thursday, August 29, 2013
Full Tau X-Ray Scattering

Structure factor
- Represents hexagonal lattice
Full **Tau** X-Ray Scattering

Form factor
 – Corresponds to structure of microtubule
Comparing X-Ray Scattering

Full Tau

MTBR only

Thursday, August 29, 2013
Bundling is Dependent Upon \textit{Ta}u

In the presence of full \textit{Ta}u protein...
- Tubulin forms microtubules
- Microtubules form hexagonal lattice

In the presence of MTBR segment only...
- Bundles lack hexagonal structure
- Microtubules bundle more tightly
What Comes Next?

- Studies will help us understand the functions of the other three segments of *Tau* protein
- Research will improve understanding of *Tau* protein function
- Successful treatment for degenerative brain diseases