A Synthetic Approach to Underdeveloped Macrocycles

Cassidy Ballard, Freda Lababidi, Andrew Zhang, and Samantha Zhang
Mentor: Miranda Sroda
PI: Dr. Javier Read de Alaniz
August 25, 2017
Macrocycles are Larger Heterocycles

Heterocycle

Macrocycle
Heterocycles Influence Diverse Industries
Macrocycles Aid in Synthesis of Medicines

Meytansine
More Steps in the Chemical Reaction Reduce Yields

Reactant

Product

Byproduct

Waste

A 100%

B 80%

C 60%

E 20%

D 40%
More Steps in the Chemical Reaction Reduce Yields

A → B → C

Reactant: 100%
Product: 80%
Byproduct: 20%
Waste: 80%

D → E

Product: 40%
Byproduct: 80%
Waste: 20%
A Chemical Reaction Creates the Difunctional Substrate

Tetraethylene Glycol

Hydrogen (H)
A Chemical Reaction Creates the Difunctional Substrate

Base

Acyl Bromide (AB)

Br

AB

Br

Tetraethylene Glycol

H

H

Base

N
Base Accepts and Removes Hydrogen

Base

Tetraethylene Glycol

Base

AB

Br

H

AB

Br
Acyl Bromide Completes Substrate Creation

Difunctional Substrate (Intermediate Product)

Tetraethylene Glycol

Br AB Tetraethylene Glycol AB Br
Product is Purified Into a Difunctional Substrate

Aqueous Impurities

Organic Solvent + Compound
Difunctional Substrate
(Intermediate Product)

Tetraethylene Glycol
Nuclear Magnetic Resonance Confirms Product Identity
Nuclear Magnetic Resonance Confirms Product Identity
Nuclear Magnetic Resonance Confirms Product Identity
Copper Bromide Creates Free Radicals

Copper Bromide (CuBr)

Difunctional Substrate (Intermediate Product)

Tetraethylene Glycol

Br

AB

CuBr

AB

Br
Copper Bromide Creates Free Radicals

\[\text{CuBr} \]

\[\text{Br} \quad \text{AB} \quad \text{Tetraethylene Glycol} \quad \text{AB} \quad \text{Br} \]

\[\text{CuBr} \]
Copper Bromide Creates Free Radicals
Copper Bromide Creates Free Radicals

Copper(II) Bromide (CuBr₂)
Copper Bromide Creates Free Radicals

Free radical
(unbonded electron)
Nitrosobenzene Catalyzes Stabilization of Radicals

Nitrosobenzene

\[\text{NB} \]

\[\text{e}^- \]

\[\text{AB} \]

\[\text{AB} \]

Tetraethylene Glycol

\[\text{e}^- \]
Nitrosobenzene Catalyzes Stabilization of Radicals

\[
\text{Nitrosobenzene (NB)} \rightarrow \text{Tetraethylene Glycol} \rightarrow \text{Radical (AB)} \rightarrow \text{Nitrosobenzene (NB)}
\]
Nitrosobenzene Catalyzes Stabilization of Radicals
Nitrosobenzene Catalyzes Stabilization of Radicals

[Diagram showing the catalytic process involving Nitrosobenzene (NB), radicals (AB), and Tetraethylene Glycol (TGA)].
Nitrosobenzene Catalyzes Stabilization of Radicals

\[\text{e}^- \rightarrow \text{AB} \rightarrow \text{Tetraethylene Glycol} \rightarrow \text{AB} \rightarrow \text{e}^- \]
Nitrosobenzene Catalyzes Stabilization of Radicals
Nitrosobenzene Catalyzes Stabilization of Radicals
Success Suggests Creation of Larger Macrocycles

Tetraethylene Glycol

Pentaethylene Glycol
Acknowledgements

Mentor: Miranda Sroda

PI: Dr. Javier Read de Alaniz

Dr. Stephanie Mendes

Dr. Dean Morales

Mayela Aldaz

Chris Nyambura

The SIMS program

CSEP